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A First Result in Complex Approximation

By: Alexander Kroitor (University of Waterloo)

Select an interval [a, b] in R and ϵ > 0. A
well-known theorem by Weierstrass [1], proven in
1885, states that for any function f(x) from R to
R continuous at each point in [a, b] there exists a
polynomial with real coefficients P (x) (depend-
ing on [a, b], ϵ, and f) that uniformly approxi-
mates f on the interval [a, b] up to error ϵ. That
is, |f(x)− P (x)| < ϵ for all x ∈ [a, b].

It is natural to look at this result and think
of how it can be generalized. There are multiple
directions to try, and it turns out that moving
to complex functions rather than real functions
yields some beautiful results. This motivates the
rich topic of complex approximation, the field
of approximating functions from C to C. In order
to delve in properly, we recall from complex anal-
ysis that a function f is analytic at a point z0 if
f can be expanded as a power series centered at
z0 (we can think of this as f being “nice” at z0).

In 1951 Mergelyan proved the following pow-
erful result [2]. First, select a compact set K in
C such that the complement of K is connected,
that is we cannot write the complement of K as a
disjoint union of two other non-empty open sets.
Then given a function f(z) from C to C that is
continuous at each point in K, and analytic at
each point in the interior of K, there exists a
polynomial with complex coefficients P (z) (once
again depending on K, ϵ, and f) that uniformly

approximates f on K up to error ϵ.
The requirement that f be analytic may look

restrictive, but the fact that the analyticity re-
quirement is only for the interior of K renders
this quite benign. We can achieve powerful re-
sults by constraining ourselves to sets that have
no interior. Recall that given a complex num-
ber z in C we can split it into its real and
imaginary parts as z = Re(z) + i Im(z), where
Re(z) and Im(z) are real numbers. We can do
the same to functions: given a function f(z)
we can split it into its real and complex parts
f(z) = Re f(z) + i Im f(z) where Re f and Im f
are functions from C to R. It is straightforward
to see that if P is a polynomial with complex
coefficients, then ReP is also a polynomial with
real coefficients.

Mergelyan’s Theorem has Weierstrass’s The-
orem as a corollary. Pick an interval [a, b] in R
and a function f(x) that is continuous on [a, b],
and define

K := {z ∈ C | Re(z) ∈ [a, b], Im(z) = 0},
g(z) := f(Re(z)) ∈ R.

Since g is continuous, and K has no interior,
Mergelyan’s theorem gives us a complex poly-
nomial P (z) such that |g(z) − P (z)| < ϵ on K.
[Continued on page 2]

Alexander Kroitor

When not grading and
giving tutorials, I
occasionally squeeze in
time for math. ◀
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What does it take to be
a mathematician? [...] It
does not take brilliance,
but love of a great game!

- Karen Keskulla
Uhlenbeck

▲

Preamble
By: Courtney Allen (University of Guelph)

It’s a common question heard in math classes the world over: ”Why do I have to show my work?”
It’s a good question: if the answer’s right, then why does it matter how I got it? While “showing
you work” often seems like busy-work, if you’ve taken even one course in so-called “advanced”
mathematics, you know the truth. The only thing that matters is your work.

If you’ve known me in real life for a sufficiently long period of time, you’ve probably heard me say,
in an exasperated tone of voice,“Math is about communication!” because, well... it is. Nobody cares
that the answer is 42 if you can’t explain how you got there. Mathematics is a tool that we use to
describe the world around us.

It’s for that reason that I’m so happy to be bringing back Notes from the Margin after its extended
hiatus. Providing an outlet for mathematics students to communicate and discuss mathematics is
integral to a well-rounded mathematical education, and it’s a privilege to have collaborated with
such brilliant contributors on this edition.

In this issue we take a dive into complex analysis, linear algebra, and take a look at an important
figure in the history of mathematics. We also celebrate the work of the winners of the Summer 2022
and Winter 2022 AARMS-CMS Student Poster Session.

If you want to see your work in The Margin, or if you have questions or comments about the articles
in this issue, contact the editor at student-editor@cms.math.ca. ◀

[Continued from cover page]

Since |a+ ib| ≥ |a|, we have that, for z in K,

ϵ > |g(z)− P (z)|
= |f(Re(z))− ReP (z)− i ImP (z)|
= |f(z)− ReP (z)− i ImP (z)|
≥ |f(z)− ReP (z)|,

and so on K (and thus on our interval [a, b]) we have found
a real polynomial ReP that uniformly approximates f up
to error ϵ.

This is only a small result in complex approximation,
and still has the requirement that the complement of K
is connected. Removing this requirement leads to approx-
imations with rational functions instead of polynomials.
Further generalization lead to an elegant proof of the beau-
tiful Birkhoff’s Universality Theorem, but that would
be a theorem for another article. ◀
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L’enveloppe spectrale des matrices bistochastiques:

Une étude de cas du comportement étrange des petits nombres

By: Ludovick Bouthat (Université Laval)

Une matrice carrée est dite stochastique si elle est non-
négative et si la somme des coefficients de chaque ligne
est égale à 1. De même, une matrice carrée est dite bis-
tochastique si elle est non-négative et si la somme des co-
efficients de chaque ligne et de chaque colonne est égale à
1. De manière équivalente, une matrice est bistochastique
si la matrice et sa transposée sont toutes deux stochas-
tiques. Ici, nous dénoterons l’ensemble des matrices n×n
bistochastiques par Dn.

En 1938, lors d’une conférence sur les châınes de
Markov organisée sous l’égide de la Société mathématique
de Moscou, le célèbre mathématicien Andrëı Kolmogorov
définit Ωn comme l’ensemble de toutes les valeurs pro-
pres de toutes les matrices stochastiques n× n et pose le
problème de la détermination de cette région. Treize ans
plus tard, en 1951, F. Karpelevič [1] obtenu finalement
une description complète de Ωn pour tout n ≥ 1.

1

i

Figure 1: Ω4

1

i

Figure 2: Ω5

Les régions Ω4 et Ω5 et les polygones réguliers capturant
les extrémités.

Une question analogue, proposée par L. Mirsky en
1963 [2], consiste à déterminer la région ωn de toutes les
valeurs propres de toutes les matrices n × n bistochas-
tiques, c’est-à-dire ωn := {λ ∈ C : λ ∈ σ(D), D ∈
Dn}. Puisque toute matrice bistochastique est également
stochastique, nous avons clairement ωn ⊆ Ωn. De plus,
posons Πn = Conv{e2πi/n, e2×2πi/n, . . . , en×2πi/n}, soit
l’enveloppe convexe fermée des ne racines de l’unité, qui
est le n-gone régulier dans le disque ancré au point 1.
Nous avons le résultat suivant, dû à Perfect et Mirsky [2].

Théorème. Π1 ∪Π2 ∪ · · · ∪Πn ⊆ ωn.

Avec des méthodes relativement simples, on peut
montrer que

ω2 = Π1 ∪Π2 = [−1, 1] et ω3 = Π1 ∪Π2 ∪Π3.

Conjecture (Perfect–Mirsky). ωn =
⋃n

k=1 Πk.

En 2006, Mashreghi et Rivard [3] ont identifié la ma-
trice bistochastique

St :=




0 0 0 1 0
0 0 t 0 1− t
0 t 1− t 0 0
0 1− t 0 0 t
1 0 0 0 0



, (0 ≤ t ≤ 1)

et ont observé que pour au moins t ∈ [0.49, 0.51], St

admet une valeur propre en dehors de la région conjec-
turée

⋃5
k=1 Πk. Ainsi, en laissant varier t et en calcu-

lant la valeur propre exceptionnelle de St, on obtient une
courbe qui se situe partiellement en dehors de la région
de Perfect–Mirsky (en rouge dans Figures 3 and 4).

1

i

Figure 3: La région ω3.

1

i

Figure 4: La région ω4.

Cependant, l’histoire ne s’arrête pas là puisqu’en 2015,
Levick, Pereira et Kribs [4] ont montré que la conjecture
est également vraie pour n = 4.

1

i

Figure 5: La région de
Perfect–Mirksy

⋃5
k=1 Πk

et la courbe exceptionnelle
de Mashreghi–Rivard.

1

i

Figure 6: Gros plan sur la
courbe exceptionnelle au-
tour de
[−0.35,−0.2]× [0.7, 0.85].
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Ludovick Bouthat

If people do not believe
that mathematics is
simple, it is only because
they do not realize how
complicated life is.

- John von Neumann
▲

En ce qui concerne n ≥ 6, le statut de
la conjecture demeure en suspend. Cependant,
Harlev, Johnson et Lim [5] ont récemment ap-
proché le problème numériquement. En se bas-
ant sur les travaux de Rivard et Mashreghi ainsi
que sur leurs propres recherches, ils ont examiné
les valeurs propres obtenues par des matrices bis-
tochastiques qui peuvent être écrites comme une
combinaison convexe d’au plus deux matrices de
permutation pour n ≤ 11 (comme c’est le cas
pour St). Ils ont observés que pour chaque cas
sauf n = 5, toutes les valeurs propres se trouvent
dans

⋃n
k=1 Πk. Cela les a motivés à proposer la

conjecture suivante.

Conjecture (Harlev–Johnson–Lim).
ωn =

⋃n
k=1 Πk pour n ≥ 1, sauf pour n = 5.

Aussi troublante soit-elle, cette conjecture
semble être la plus convaincante à ce jour, car
elle est étayée par des calculs numériques et des
propriétés algébriques de Dn. Espérons qu’une
nouvelle idée nous permettra de résoudre ce
mystérieux problème. En attendant, nous con-
cluons par la question ouverte suivante :

Question ouverte. Quelle est la région ωn pour
n ≥ 5? En particulier, peut-on caractériser la
région ω5? ◀
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Ada Lovelace: The Woman Who Saw the Future
By: Courtney Allen (University of Guelph)

In 1843, an English translation of a French article was
published in Taylor’s Scientific Memoirs [1]. The arti-
cle, originally written by Luigi Menabrea, outlined the
workings of a hypothetical machine known as Babbage’s
Analytical Engine, an early programmable computer. It
was wildly influential, not for the article itself, but for
the notes made by the translator, a young woman by the
name of Augusta Ada King, the Countess of Lovelace.

Ada Lovelace, as she is more commonly known, was
the only legitimate child of Lord Byron, born in England
on 10 December 1815. After her parents separation, her
mother, Lady Byron, encouraged her to pursue the sci-
ences. Since the sciences were then thought to be the
province of men, Lovelace gained her education by read-
ing textbooks and corresponding with some of the great-
est mathematical minds of the time, one of whom was
Charles Babbage [2].

Seeing her interest in his proposed Analytical En-
gine, Babbage encouraged Lovelace to read and translate
the aforementioned paper by Luigi Menabrea [3]. But
Lovelace did more than that, she saw the potential of
the Engine in a way that no one had before. Her notes
were longer than the article itself, and contain the first
computer program, a table designed for the Engine that

would compute the Bernoulli numbers [2]. More impor-
tantly, she saw the true power of the Analytical Engine,
theorizing that it could be used to perform complicated
tasks such as composing music [2]. Almost 100 years af-
ter her death from uterine cancer at age 36, her work
continued to influence the inventors of the first modern
computers, such as Alan Turing [3].

At a time when women’s mathematical aptitude was
often dismissed, Ada Lovelace saw the possibilities of a
machine that did not yet even exist ◀
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Almost Periodic Equidistributed Functions
- Yihan Zhu (University of Windsor)

ALMOST PERIODIC EQUIDISTRIBUTED FUNCTIONS

Yihan Zhu
University of Windsor

ALMOST PERIODIC EQUIDISTRIBUTED FUNCTIONS

Yihan Zhu
University of Windsor

Background

There are plenty of periodic motions in our life. However, a linear combination
of two or more periodic motions need not be periodic any longer. Almost peri-
odic functions are more general than periodic functions. Therefore, the class of
almost periodic functions forms a more suitable object of study from a structural
point of view. Equidistribution, which is also known as uniform distribution, is an
important concept in many areas including number theory, ergodic theory, proba-
bility and theoretical computer science. The classical theory of equidistribution of
sequences was initiated by Weyl following earlier works by Bohl and Sierpiński.
The formal definition of equidistribution mod 1 of sequences was given initially by
Weyl in 1916. A sequence (xn)n of real numbers is equidistributed mod 1 if for
every pair a, b of real numbers with 0 6 a < b 6 1,

lim
N→∞

1

N

N∑

n=1

1[a,b]({xn}) = b− a, (1)

where 1[a,b] is the characteristic function of the subinterval [a, b] and {xn} is the
fractional part of xn. The study of equidistribution of sequences in compact topo-
logical spaces was initiated by Eckmann in 1943.
The main idea of this research is generalizing the existing concept of equidis-
tributed sequences to equidistributed functions by using the property of the
invariant mean on almost periodic functions.

Definitions

If X is a topological space, then a Banach function algebra on X is a subalgebra
A of Cb(X) (continuous bounded functions on X) that is a Banach algebra under
a norm ‖ · ‖. By a monotone compact cover on a topological space S we mean
a net {Kα}α∈I of compact subsets of S such that (i) S =

⋃
α∈I Kα and (ii) Kα ⊂

Kβ if α ≤ β.
Definition 1: Let S be a locally compact space equipped with a regular Borel
measure λ and a monotone compact cover {Kα}α∈I . Let X be a topological
space, A a Banach function algebra on X, and m ∈ A∗. We say that a continuous
function ϕ : S −→ X is m-equidistributed along {Kα}α∈I if for every f ∈ A:

〈m, f〉 = lim
α∈I

1

λ(Kα)

∫

Kα

f ◦ ϕ(s)dλ(s). (2)

Remark: In particular, if S = N with the counting measure and the monotone
compact cover {NN}∞N=1, (2) could be interpreted as:

〈m, f〉 = lim
N→∞

1

N

N∑

n=1

f (xn), f ∈ A, (3)

which coincides with the definition of equidistribution of sequences.
As a special case, we may consider the equidistribution of functions with respect
to almost periodic means.
Definition 2: Let S be a locally compact space equipped with a regular Borel
measure λ and a monotone compact cover {Kα}α∈I . Let H be a topological
group and M the invariant mean on AP (H). A continuous mapping ϕ : S −→ H
is called almost periodic equidistributed (a.p.-equidistributed) along {Kα}α∈I if it
is M -equidistributed along {Kα}α∈I .

An Example

Consider the amenable groupG = (0,∞)nR with the multiplication (x′, y′)(x, y) = (x′x, y′+
x′y), and a left Haar measure λ = dx dy/x2 . A Følner sequence {Kn}∞n=1 for G is given by
the trapezoidal regions Kn defined by:

Kn = {(x, y) ∈ R2 : 1/n 6 x 6 n, −nx 6 y 6 nx}.
Now, let q : G −→ G/R ∼= (0,∞), be the canonical quotient homomorphism, and
ψ : (0,∞) −→ (0,∞) by any continuous homomorphism with dense range. Then ϕ =
ψ ◦ q : G −→ (0,∞) is a continuous homomorphism with dense range in (0,∞), and there-
fore ϕ is a.p.-equidistributed along {Kn}∞n=1.
As an example, let ψ(x) = xα, where α > 0 is fixed. Then ϕ(x, y) = ψ ◦ q(x, y) = xα, and
hence by definition, for every f ∈ AP ((0,∞)) we have

〈M, f〉 = lim
n→∞

1

λ(Kn)

∫

Kn

(f ◦ ϕ)(x, y) dλ

= lim
n→∞

1

4n log n

∫ n

1/n

∫ nx

−nx
f (xα)

dydx

x2

= lim
n→∞

1

2 log n

∫ n

1/n

f (xα)

x
dx.

Main Result

Theorem 1 (Weyl’s criterion): Let S be a locally compact space equipped with a regular
Borel measure λ and a monotone compact cover {Kα}α∈I . Let H be a topological group.
Then a continuous mapping ϕ : S −→ H is a.p.-equidistributed along {Kα}α∈I if and only
if

lim
α∈I

1

λ(Kα)

∫

Kα

(σij ◦ ϕ)(s) dλ(s) = 0, (4)

for all nontrivial σ ∈ CH , 1 ≤ i, j ≤ dσ.

Proof of Theorem 1: First, suppose that ϕ is a.p.-equidistributed along {Kα}α∈I , and let M
be the almost periodic mean on AP (H). Since σij ∈ AP (H) (1 ≤ i, j ≤ dσ), by Definition
2 we can write

lim
α∈I

1

λ(Kα)

∫

Kα

(σij ◦ ϕ)(s) dλ(s) = 〈M,σij〉. (5)

Consider the inner product on AP (H) defined by (f |g) = M(fg), f, g ∈ AP (H). By as-
sumption σ 6∼= 1H , and therefore we can use the orthogonality relation between coefficient
functions of representations in CH to write

〈M,σij〉 = 〈M,σij1H〉 = (σij|1H) = 0. (6)

The identities (5) and (6) imply (4).
Conversely, suppose that (4) holds. We need to show that

lim
α∈I

1

λ(Kα)

∫

Kα

(f ◦ ϕ)(s) dλ(s) = 〈M, f〉 for all f ∈ AP (H). (7)

Since M is a mean on AP (H), we have 〈M, 1H〉 = 1, and hence both sides of (7) are equal
to 1 for f = 1H . If f = σij, σ ∈ CH , σ 6∼= 1H , 1 ≤ i, j ≤ dσ, then (7) holds by (4) and (6).
Thus (7) holds for all linear combinations of coefficient functions of representations in CH .
Since such functions are uniformly dense in AP (H), (7) follows by a 3ε-argument.

Applications

Theorem 2: Let H be a topological group, m > 1, and ϕ : Nm −→ H a
function. Suppose that there exists some 1 6 l 6 m, such that for every h ∈ N,
the function

Nm −→ H, n 7→ ϕ(n1, . . . , nl + h, . . . , nm)ϕ(n1, . . . , nl, . . . , nm)
−1 (8)

is a.p.-equidistributed along the monotone cover {KN}N∈Nm. Then for all q ∈
Nm, and all r ∈ Zm with rj > 0 (1 6 j 6 m), the function

ψ : Nm −→ H, n 7→ ϕ(nq + r) (9)

is a.p.-equidistributed along {KN}N∈Nm.

Theorem 3: Let m > 1 and {KN}N∈Nm be the monotone cover. Let
p(x1, . . . , xm) be a polynomial in m variables and with real coefficients that con-
tains at least one nonconstant term with an irrational coefficient. Then for all
integers qj > 1, rj > 0 (j = 1, . . . ,m), the function

ψ : Nm −→ T, (n1, . . . , nm) 7→ e2πip(n1q1+r1,...,nmqm+rm), (10)

is µ-equidistributed along {KN}N∈Nm, where µ is the normalized Lebesgue
measure on T.

Remark: Theorem 2 is a generalization of Hlawka’s equidistribution result while
Theorem 3 is a generalization of van der Corput’s result.

Further Questions

• We believe that our results for equidistribution of continuous functions with
values in topological groups can be extended to continuous functions with
values in topological semigroups.
• We will try to explore whether above results have any relationship with the
ergodic theory, such as the mean ergodic theorem and so on.
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Analyzing Distance-Regular Graphs Arising From Primitive Groups
Alaina Pardy Abigail Rowsell

Memorial University of Newfoundland Grenfell Campus

Introduction

A distance-regular graph is a regular, connected graph with degree k and diameter

d, such that the following holds. The graph has intersec on numbers

b0 = k, b1, ..., bd−1, c1 = 1, c2, ..., cd,

such that for every pair of ver ces x, y at distance i, we have

1. the number of ver ces in Γi−1(x) adjacent to y is ci (1 ≤ i ≤ d);
2. the number of ver ces in Γi+1(x) adjacent to y is bi (0 ≤ i ≤ d − 1).
The array {k, b1, ..., bd−1; 1, c2, ..., cd} is the intersec on array of Γ.
From the intersec on array, we can determine if a graph is also strongly regular.

If it has a diameter of two, then it is a strongly regular graph.

Many interes ng distance-regular graphs belonging to well-known graph families

arise from primi ve groups. Using the GAP system, these graphs were systemat-

ically studied up to 4095 ver ces.

Methods

Research was conducted using the GAP so ware with the GRAPE package.

Focus was placed on graphs that arose from primi ve permuta on groups up

to 4095 ver ces. The GAP library used for this research only contained the

graphs up to this number of ver ces. However, due to the run mes of some

larger ranks, not all graphs of each group in the library were found.

To analyze the vast volume of graphs that were outpu ed, they were

categorized based on the number of ver ces they contained. The two

sec ons included those with a prime or prime power number of ver ces and

those that were composite.

Various proper es of the graphs were collected using built-in commands on

the GAP so ware. These included the group, combina on of orbitals (number

of orbits on ordered pairs) that give a distance-regular graph, rank (number of

orbitals), and intersec on array. Based on this informa on, we could conclude

the specific graph and its family from the available literature.

Results

We obtained hundreds of distance-regular graphs, and it was quickly iden fied

that many of these graphs fit into well-known distance-regular graph families such

as the Hamming, Johnson, Kneser, and Paley graphs.

Hamming Graphs

The Hamming graphs, H(d, q), arise from the group Sym(q)WrSym(d).
The Hamming graphs in general have the following intersec on array:

ι(H(d, q)) = {(q − 1)(d), (q − 1)(d − 1), ..., (q − 1)(1); 1, 2, ..., d}.

We found the following Hamming graphs:

H(2, 3) up to H(2, 63)
H(3, 3) up to H(3, 15)
H(4, 3) up to H(4, 7)
H(5, 3) and H(5, 4)
H(6, 3)
H(7, 3)

Figure 1. Hamming H(2, 3) Graph

Results

Johnson and Kneser Graphs

The Johnson graphs, J(v, k), arise from Sym(v) ac ng on the k-element

subsets of {1, 2, ..., v}.
The Johnson graphs have the intersec on array:

ι(J(v, k)) = {(k)(v − k), (k − 1)(v − k − 1), ..., (k − (d − 1))(n − k − (d − 1)); 1, 4, ..., d2}.

When k = 2, the complement of J(v, 2) is also distance-regular. This graph is

the Kneser graph, K(v, 2).
The Kneser graphs have the intersec on array:

ι(K(v, 2)) = {(v − 2)(v − 3)/2, 2v − 8; 1, (v − 3)(v − 4)/2}.

Through our analysis, we found the following Johnson and Kneser graphs:

K(5, 2) up to K(91, 2)
J(5, 2) up to J(91, 2)
J(7, 3) up to J(30, 3)
J(9, 4) up to J(19, 4)
J(11, 5) up to J(15, 5)
J(13, 6) and J(14, 6)

Figure 2. Petersen Graph ∼= K(5, 2) Figure 3. Johnson Graph J(5, 2)

Paley Graphs

The Paley graphs exist when the number of ver ces is a prime or prime power

and has the property that it is congruent to 1 mod 4.

The Paley graphs found were on the number of ver ces involving the prime

squares from 3 to 61 and the prime powers 53, 133, 54, 34, 74, 55, and 36.

The Paley graphs have the intersec on array:
{

v − 1
2 ,

v − 1
4 ; 1,

v − 1
4

}
.

They also are strongly regular with the parameters:
(

v,
v − 1

2 ,
v − 5

4 ,
v − 1

4

)
.

Sporadic Graphs

There were more than 100 sporadic graphs that we found that did not fit into any

known families. Some notable sporadic graphs are the Sylvester graph, Biggs-

Smith graph, Suzuki graph, and the Rudvalis graph.

The Sylvester graph is on 36 ver ces, arising from PΓL(2, 9), with intersec on

array {5, 4, 2; 1, 1, 4}.
The Biggs-Smith graph is on 102 ver ces, arising from PSL(2, 17) with
intersec on array {3, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1, 3}.
The Suzuki graph is on 1782 ver ces, arising from Suz : 2, with intersec on

array {416, 315; 1, 96}.
The Rudvalis graph is on 4060 ver ces, arising from the group Ru, with
intersec on array {1755, 1024; 1, 780}.

Figure 4. Sylvester Graph Figure 5. Biggs-Smith Graph

Unknown Graph and NO−
8 (2) Graph

When a emp ng to iden fy a graph that was found on 136 ver ces, wewere un-

able to find anything about it in the literature. There was another graph, NO−
8 (2),

on 136 ver ces that shared the same intersec on array, so we inves gated fur-

ther to determine the similari es between the two graphs. This was done by

comparing the strongly regular array, group, rank, clique number, and the chro-

ma c number of both graphs and their complements. The following table outlines

the findings.

Graph Unknown Complement NO−
8 (2) Complement

Intersec on Array {63, 32; 1, 28} {72, 35; 1, 40} {63, 32; 1, 28} {72, 35; 1, 40}
Strongly Regular Array (136, 63, 30, 28) (136, 72, 36, 40) (136, 63, 30, 28) (136, 72, 36, 40)

Group PSL(2,17) PSL(2,17) PSO−(8,2) PSO−(8,2)

Rank 12 12 3 3

Clique Number 8 10 8 7

Chroma c Number 15 17 or 18 20 17

This informa on was found using the GAP so ware. Due to the long run mes

of obtaining the chroma c number of graphs, we were unable to determine the

exact value of the complement of the unknown graph and NO−
8 (2). We did find a

possible range; however, Gordon Royle determined that the chroma c number of

NO−
8 (2) was 20 using a different approach and also narrowed down the chroma c

number of the complement of the unknown graph to 17 or 18.

Summary

To conduct research on distance-regular graphs arising from primi ve groups,

the GAP system was used, along with the GRAPE package, to look at graphs

on up to 4095 ver ces.

Hundreds of graphs were obtained, and many of these graphs fit into

well-known graph families such as the Hamming, Johnson, Kneser, and Paley

graphs. We also found many sporadic graphs, including the Sylvester graph,

Biggs-Smith graph, Suzuki graph, and the Rudvalis graph.

During our research, we came across a graph on 136 ver ces that we

determined to be unknown. This graph has the same parameters as another

graph on 136 ver ces, the NO−
8 (2) graph.

Extra informa on was collected on both the unknown graph and the NO−
8 (2)

graph, along with their complements, and it was determined that these graphs

have notable differences.
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Positivity is undecidable in tensor product of free algebras
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Positivity and Sum-of-squares

A polynomial f ∈ R[x1, · · · , xn] is said to be positive if
f (x⃗) ≥ 0 for all x⃗ ∈ Rn. Hilbert’s 17th problem concerns
whether every positive polynomial can be expressed as a sum of
squares of other polynomials

∑k
i=1 p2

i .

Many problems in math are closely
connected with deciding whether a
given element is positive and finding
certificate of positivity.

In general, we consider positivity in ∗-algebras.
Definition
– An element a of a ∗-algebra A is positive if ϕ(a) is
positive for all ∗-representations ϕ : A → B(H).

– An element a of a ∗-algebra A is a sum-of-squares
(SOS) if there are elements x1, · · · , xn in A such that
a =

∑n
i=1 x∗

i xi .

SOS is a sufficient condition for positivity. Is it necessary?

– For commutative algebras (Hilbert’s 17th)

· Hilbert 1888: in general, positive ̸= SOS
· Artin 1927: positive =

∑k
i=1(pi/gi)2

– For non-commutative algebras, let A be the free algebra
C∗⟨x1, · · · , xn⟩ or the free group algebra CFn, and let
a ∈ A. The following statements are equivalent [1, 2]:

(i) a is positive.
(ii) a is a sum-of-squares.
(iii) a is positive in all finite-dimensional ∗-representations.
What about A ⊗ A? Connes’ embedding problem
asks whether (i) ⇔ (iii) in A ⊗ A, and the recent
breakthrough MIP∗ = RE ([3]) yields a negative solution.
We show that positivity is undecidable in A ⊗ A.
As a consequence, (i)⇎(ii).

Motivations from quantum information

In quantum information theory, we are interested in the tensor
product algebras CFn ⊗ CFn and CZ∗n

m ⊗ CZ∗n
m which models

a physical system with two spatially separated subsystems:

In each subsystem we can make
n different quantum measure-
ments, each with m outcomes.

Undecidability

– RE: recursively enumerable. L = Lyes ∪ Lno is in RE if

· ∃ an algorithm M accepts x ∈ Lyes in finite steps;
· M may not halt for x ∈ Lno

– coRE: the complement of RE

The halting problem for a universal Turing
machine M is undecidable (RE-complete)

Main results

Theorem
Let A be one of the algebras Q∗⟨x1, . . . , xn⟩ or QFn. If n
is large enough, then the decision problem

Given α ∈ A ⊗Q A, is α positive

as an element of AC ⊗C AC?

is undecidable (coRE-hard).

Since the decision problem

Given α ∈ A ⊗Q A, is α a sum-of squares

as an element of AC ⊗C AC?

is in RE, we have the following:

Corollary

Sum-of-squares is NOT a necessary condition for positivity in
tensor product of free algebras.

Key ideas

Fix a universal Turing machine M. We construct a computable
map α : N → QFn ⊗Q QFn such that

α(m) is positive ⇐⇒ M does not halt on the input m.

To achieve this, we need to encode the halting problem for the
Turing machine M into a finitely-presented group.
We can first encode the halting problem for M in a
recursively-presented group.

⟨∞ generators|∞ relations⟩↪→

HNN extensions

⟨finite generators|∞ relations⟩↪→

efficient Higman’s embedding [4]

⟨finite generators|finite relations⟩
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Series expansion via unwinding
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The Context

Function Expansion Theory has profound applications in all areas of science,
especially in Signal Processing, Physics, and Engineering.

• An entire function has the Taylor series expansion f (z) =
∑∞
n=0 anz

n, which
converges for all values of z in C.

• A 2π-periodic function has the Fourier series expansion f (z) =∑∞
n=−∞ f̂ (n)einx. In particular, it converges in L2(T) ⇐⇒ f ∈ L2(T).

New interpretation of Taylor series: f (z) − f (0) has a root at 0 so we can write
f (z) − f (0) = zf1 for some holomorphic f1. This gives a procedure for a naive
unwinding series:

f (z) = f (0) + (f (z)− f (0))

= f (0) + zf1(z)

= f (0) + zf1(0) + z2f2(z)

= · · ·
= f (0) + zf1(0) + z2f2(0) + z3f3(0) + · · ·

Can this observation be pushed further?

Blaschke Unwinding

In 1995, R. Coifman had the revolutionary idea of interpreting the monomials
z 7→ zn as finite Blaschke products, and thus suggested to develop f (z) as f (z) =
c0 + c1B1(z) + c2B1(z)B2(z) + · · · , where cn are constants and Bn are finite
Blaschke products.

Definition. For zk ∈ D and γ ∈ T, a finite Blaschke product is a function of the
form

B(z) = γ
n∏

k=1

z − zk
1− zkz

.

This relies on the Blaschke factorization theorem.

Fig. 1: Blaschke factorization of a holomorphic function.

Explicitly, we obtain the Blaschke unwinding expansion

f (z) = f (0) + g1(0)B1(z) + g2(0)B1(z)B2(z) + · · · ,

which was first studied by M. Nahon [3] in 2000.

It was also rediscovered and studied under the name Adaptive Fourier Decom-
position, on which there is a vast literature.

Why Study this Unwinding Series?

Practical interest of the method:

• Convergence at least as fast as Fourier series (exponential rate);

• Blaschke factorization without knowing the roots is computationally fast and stable;

• Stability of the method under small diffeomorphisms of the underlying domain, in con-
trast to classical Fourier methods;

• Unwinding outperforms frequency extractions via SST time-frequency analysis.

Several real-world applications of the unwinding series:

• Speech signals and recognition, medical signal analysis, signal processing for gravita-
tional waves, predicting the stock price movements, etc.

Background

We work in analytic function spaces. Important examples include

• The Hardy spaces Hp(T) := {f ∈ Lp(T) : f̂ (n) = 0 for n ≤ −1}, with H∞ the set of
bounded analytic functions on D with sup norm;

• Reproducing kernel Hilbert spaces (RKHS), Hilbert spaces defined by the fact that
pointwise evaluation is a continuous linear functional (e.g., Cn, H2, the Dirichlet space
D, Sobolev spaces Hs).

The convergence of the Blaschke unwinding series was a major question from the begin-
ning, but has always been a very delicate issue. Satisfactory results only came in the 2010s.

• Convergence in H2(T) [4]; general results [2] that imply convergence in L2 for initial
data in D, and in Hs for initial data in Hs+1/2 (s > −1/2); convergence of a more
general inner-outer unwinding series for functions in Hp(T) [1].

Notation and Setup

Seeing the past developments and using our knowledge of Operator Theory, we
considered the more general series expansion

f (z) = c0 + c1b1(z) + c2b1(z)b2(z) + · · · ,

where bn are elements of the closed unit ball of the multiplier algebra of our
space of analytic functions H and cn are some functions.

Monomials zn −→ Blaschke products −→ Inner functions −→ Unit ball of M(H)

Definition. The Riesz projection is the orthogonal projection from Lp onto Hp.

For example, P (1 + 2 cos θ) = P (e−iθ + 1 + eiθ) = 1 + eiθ.

Definition. For φ ∈ L∞(T) and f ∈ Hp(T), the Toeplitz operator associated to
φ is

Tφ(f ) = P (φf ).

Note that M(Hp) = H∞. For b ∈ H∞, we let

Qb := I − TbTb̄.

A General Unwinding Scheme

For a sequence (bn)n≥1 of elements of the unit ball of H∞, we can unwind
f ∈ Hp using our previous notation as

f = Qb1f + b1Qb2Tb̄1
f + b1b2Qb3Tb̄1b̄2

f + b1b2b3Qb4Tb̄1b̄2b̄3
f + . . .

Furthermore, the series converges in Hp.

In fact, a more abstract result for RKHS (using multiplication operators) and a
result for more abstract but more general function spaces also hold.

Hence, we can say that these results are relevant for at least two principal
reasons:

• Our unwinding generalizes the previously known unwinding schemes and is
adapted to the language of Operator Theory.

• We prove convergence in more spaces and in more generality, encompass-
ing all previously known results.
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Type equation here.

Model & Method

Discussion

Motivation

Instead of directly studying the delayed harvesting model, we can 
deduce many relevant properties by studying an associated non-linear 
higher order difference equation.                                     , 

The yield is maximized when                               .                                 

Is this yield sustainable? This yield is sustainable if and only if either
or              and         is within the following bounds,  

Results

Consider a logistic DE subject to impulsive delayed harvesting, where the 
impulsive deduction is a function of the population size at the time of a 
previous harvesting event. In the model, k represents the number of 
harvesting periods T that the information has been delayed by.

E = 1 � e�rT/2
<latexit sha1_base64="ahSkK1T166mjweDK2sMLDpxCtng=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0HwkrgbBb0IQRE8RsgLkjXMTnqTIbOzy8ysEtZ8ihcPinj1S7z5N04eB00saCiquunu8mPOlHacb2tpeWV1bT2zkd3c2t7ZtXN7dRUlkkKNRjySTZ8o4ExATTPNoRlLIKHPoeEPrsd+4wGkYpGo6mEMXkh6ggWMEm2kjp27wZfYxQUM92lBVk9Ko46dd4rOBHiRuDOSRzNUOvZXuxvRJAShKSdKtVwn1l5KpGaUwyjbThTEhA5ID1qGChKC8tLJ6SN8ZJQuDiJpSmg8UX9PpCRUahj6pjMkuq/mvbH4n9dKdHDhpUzEiQZBp4uChGMd4XEOuMskUM2HhhAqmbkV0z6RhGqTVtaE4M6/vEjqpaJ7WizdneXLV7M4MugAHaJj5KJzVEa3qIJqiKJH9Ixe0Zv1ZL1Y79bHtHXJms3soz+wPn8A0BKRyA==</latexit>

k = 1<latexit sha1_base64="Eww5mYnbnLuh+tbScipMF8SQPJM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8NOME/YgOJA85o8ZKD6Nrr1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/8jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvHOK9X7i3LtJo+jAMdwAmfgwSXU4A7q0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8AxXeNdQ==</latexit> k � 2
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Results (Cont.)

One BIG change because 
of the delay… the solution 
is not globally attracting for 
all initial values (unlike the 
model with no delay). Each 
dot represents whether 
the population survives 
(black) or goes extinct (red) 
given the initial conditions.

So, we’ve found a MSY…
Unfortunately, as 
increases the range of 
values where the MY is 
sustainable gets smaller 
and smaller.

Let xn = N(nT+)
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Conclusions

What if my yield is NOT maximal? Can it still be sustainable? 
Yes! However, if                      , then there exists                                          

such that                         for the yield to
be sustainable.

rT � f(k)
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MY =
Kc(e

rT/2 � 1)

T (erT/2 + 1)
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E⇤ 2 (0, 1 � e�rT/2)
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Survival vs. Extinction: Dependent on initial conditions
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Psst… this is the 
same MY as the 

non-delayed 
model [4]

Optimality and Sustainability of Delayed Impulsive Harvesting

Local Asymptotic Stability 
of Positive Solution

Sustainability of 
Associated Yield

Unsustainable
Susta

inable 
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One issue was that our methods relied on the assumption 
that harvesting happened continuously rather than in many 
short spurts. In 2003, [4] suggested using an impulsive DE 
to take these short spurts of harvesting into account.

The Cod Stocks on the East Coast of 
Canada had collapsed.

This was an indication that there was 
something wrong with how we were 

estimating sustainable harvests.

But the positive solution corresponding to the MSY was 
globally asymptotically stable. This still didn’t quite explain 
what we were observing in fisheries.

Delays DO matter: The Maximum Yield (MY) 
is not affected, but whether it is sustainable 
and becomes a MSY is highly dependent on 

the delay!

Delays DO matter: Solutions are not 
guaranteed to survive for all positive initial 

conditions, even when they are 
asymptotically stable. We can have 

extinction in finite time!
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8 March, 1982. Opening of the Eleventh Session of the Third United Nations Conference on the Law of the Sea, United Nations Headquarters New York. Image accessed on 17 
November, 2022 from the website of the United Nations Audiovisual Library of International Law, http://www.un.org/law/avl.

Collapse of Atlantic Cod Stocks 
off the East Coast of 
Newfoundland in 1992. Image 
accessed on 17 November, 2022. 
pg 18 Ecosystems and Human 
Well-being: Opportunities and 
Challenges for Business and 
Industry. Millennium Ecosystem 
Assessment. (2005).

In Fisheries Science, the Maximum 
Sustainable Yield (MSY) is often used as a 
guideline for harvesting quotas. It has 
been used to make fishery management 
decisions since the mid 20th century and is 
enshrined in some international law (such 
as the 1982 United Nations Convention on 
the Law of the Sea (UNCLOS)) [3].

• Our models were assuming that data was up 
to date. Was this a valid assumption?

• “…and the scientific advice was based on the 
status of the stock two years earlier than the 
year in which the TAC was being applied” -
Resource Prospects for Canada's Atlantic 
Fisheries 1989-1993, Department of Fisheries 
and Oceans.

What if there 
was a delay in 

the information 
used to make 

harvesting 
decisions?

GOAL: Assess the effect of the delay on the 
impulsive harvesting model and derive a 

MSY.



Activities funded by the CMS StudC in 2022

� Math to Power her Life
(May 21st – University of Ottawa)

� Ontario Mathematics Conference (OMC) 2022
(May 25th-29th – University of Ottawa)
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