A First Result in Complex Approximation

By: Alexander Kroitor (University of Waterloo)

Select an interval $[a, b]$ in \mathbb{R} and $\epsilon>0$. A well-known theorem by Weierstrass [1], proven in 1885 , states that for any function $f(x)$ from \mathbb{R} to \mathbb{R} continuous at each point in $[a, b]$ there exists a polynomial with real coefficients $P(x)$ (depending on $[a, b], \epsilon$, and f) that uniformly approximates f on the interval $[a, b]$ up to error ϵ. That is, $|f(x)-P(x)|<\epsilon$ for all $x \in[a, b]$.

It is natural to look at this result and think of how it can be generalized. There are multiple directions to try, and it turns out that moving to complex functions rather than real functions yields some beautiful results. This motivates the rich topic of complex approximation, the field of approximating functions from \mathbb{C} to \mathbb{C}. In order to delve in properly, we recall from complex analysis that a function f is analytic at a point z_{0} if f can be expanded as a power series centered at z_{0} (we can think of this as f being "nice" at z_{0}).

In 1951 Mergelyan proved the following powerful result [2]. First, select a compact set K in \mathbb{C} such that the complement of K is connected, that is we cannot write the complement of K as a disjoint union of two other non-empty open sets. Then given a function $f(z)$ from \mathbb{C} to \mathbb{C} that is continuous at each point in K, and analytic at each point in the interior of K, there exists a polynomial with complex coefficients $P(z)$ (once again depending on K, ϵ, and f) that uniformly
approximates f on K up to error ϵ.
The requirement that f be analytic may look restrictive, but the fact that the analyticity requirement is only for the interior of K renders this quite benign. We can achieve powerful results by constraining ourselves to sets that have no interior. Recall that given a complex number z in \mathbb{C} we can split it into its real and imaginary parts as $z=\operatorname{Re}(z)+i \operatorname{Im}(z)$, where $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are real numbers. We can do the same to functions: given a function $f(z)$ we can split it into its real and complex parts $f(z)=\operatorname{Re} f(z)+i \operatorname{Im} f(z)$ where $\operatorname{Re} f$ and $\operatorname{Im} f$ are functions from \mathbb{C} to \mathbb{R}. It is straightforward to see that if P is a polynomial with complex coefficients, then $\operatorname{Re} P$ is also a polynomial with real coefficients.

Mergelyan's Theorem has Weierstrass's Theorem as a corollary. Pick an interval $[a, b]$ in \mathbb{R} and a function $f(x)$ that is continuous on $[a, b]$, and define

$$
\begin{aligned}
K & :=\{z \in \mathbb{C} \mid \operatorname{Re}(z) \in[a, b], \operatorname{Im}(z)=0\} \\
g(z) & :=f(\operatorname{Re}(z)) \in \mathbb{R}
\end{aligned}
$$

Since g is continuous, and K has no interior, Mergelyan's theorem gives us a complex polynomial $P(z)$ such that $|g(z)-P(z)|<\epsilon$ on K. [Continued on page 2]

Preamble

Courtney Allen Acting Editor-In-Chief

What does it take to be a mathematician? [...] It does not take brilliance, but love of a great game! - Karen Keskulla Uhlenbeck

By: Courtney Allen (University of Guelph)

It's a common question heard in math classes the world over: "Why do I have to show my work?" It's a good question: if the answer's right, then why does it matter how I got it? While "showing you work" often seems like busy-work, if you've taken even one course in so-called "advanced" mathematics, you know the truth. The only thing that matters is your work.

If you've known me in real life for a sufficiently long period of time, you've probably heard me say, in an exasperated tone of voice, "Math is about communication!" because, well... it is. Nobody cares that the answer is 42 if you can't explain how you got there. Mathematics is a tool that we use to describe the world around us.

It's for that reason that I'm so happy to be bringing back Notes from the Margin after its extended hiatus. Providing an outlet for mathematics students to communicate and discuss mathematics is integral to a well-rounded mathematical education, and it's a privilege to have collaborated with such brilliant contributors on this edition.

In this issue we take a dive into complex analysis, linear algebra, and take a look at an important figure in the history of mathematics. We also celebrate the work of the winners of the Summer 2022 and Winter 2022 AARMS-CMS Student Poster Session.

If you want to see your work in The Margin, or if you have questions or comments about the articles in this issue, contact the editor at student-editor@cms.math.ca.
[Continued from cover page]
Since $|a+i b| \geq|a|$, we have that, for z in K,

$$
\begin{aligned}
\epsilon & >|g(z)-P(z)| \\
& =|f(\operatorname{Re}(z))-\operatorname{Re} P(z)-i \operatorname{Im} P(z)| \\
& =|f(z)-\operatorname{Re} P(z)-i \operatorname{Im} P(z)| \\
& \geq|f(z)-\operatorname{Re} P(z)|
\end{aligned}
$$

and so on K (and thus on our interval $[a, b]$) we have found a real polynomial $\operatorname{Re} P$ that uniformly approximates f up to error ϵ.

This is only a small result in complex approximation, and still has the requirement that the complement of K is connected. Removing this requirement leads to approximations with rational functions instead of polynomials. Further generalization lead to an elegant proof of the beautiful Birkhoff's Universality Theorem, but that would be a theorem for another article.

References

[1] R. G. Bartle and D. R. Sherbert. Introduction to Real Analysis, 4 th Edition. Hoboken, NJ, USA: Wiley, (pg. 148). 2018.
[2] D. Gaier. Lectures on Complex Approximation. Boston, MA, USA: Birkh auser, (pg. 97). 1987.

In This Issue:

A First Result in Complex Approximation

- Alexander Kroitor (University of Waterloo)1
Preamble
- Courtney Allen (University of Guelph)2
L'enveloppe spectrale des matrices bistochastiques:Une étude de cas du comportement étrange des petitsnombres
- Ludovick Bouthat (Université Laval) 3
Ada Lovelace: The Woman Who Saw the Future
- Courtney Allen (University of Guelph) 4
AARMS-CMS Student Poster Session Winners
Summer 20225
AARMS-CMS Student Poster Session Winners Winter 2022 6
Activities funded by the CMS StudC in 2022 8
Acknowledgements 8
Submit your article to Notes from the Margin! 8

L'enveloppe spectrale des matrices bistochastiques: Une étude de cas du comportement étrange des petits nombres

By: Ludovick Bouthat (Université Laval)

Une matrice carrée est dite stochastique si elle est nonnégative et si la somme des coefficients de chaque ligne est égale à 1 . De même, une matrice carrée est dite bistochastique si elle est non-négative et si la somme des coefficients de chaque ligne et de chaque colonne est égale à 1. De manière équivalente, une matrice est bistochastique si la matrice et sa transposée sont toutes deux stochastiques. Ici, nous dénoterons l'ensemble des matrices $n \times n$ bistochastiques par \mathcal{D}_{n}.

En 1938, lors d'une conférence sur les chaînes de Markov organisée sous l'égide de la Société mathématique de Moscou, le célèbre mathématicien Andreï Kolmogorov définit Ω_{n} comme l'ensemble de toutes les valeurs propres de toutes les matrices stochastiques $n \times n$ et pose le problème de la détermination de cette région. Treize ans plus tard, en 1951, F. Karpelevič [1] obtenu finalement une description complète de Ω_{n} pour tout $n \geq 1$.

Figure 1: Ω_{4}

Figure 2: Ω_{5}

Les régions Ω_{4} et Ω_{5} et les polygones réguliers capturant les extrémités.
Une question analogue, proposée par L. Mirsky en 1963 [2], consiste à déterminer la région ω_{n} de toutes les valeurs propres de toutes les matrices $n \times n$ bistochastiques, c'est-à-dire $\omega_{n}:=\{\lambda \in \mathbb{C}: \lambda \in \sigma(D), D \in$ $\left.\mathcal{D}_{n}\right\}$. Puisque toute matrice bistochastique est également stochastique, nous avons clairement $\omega_{n} \subseteq \Omega_{n}$. De plus, posons $\Pi_{n}=\operatorname{Conv}\left\{e^{2 \pi i / n}, e^{2 \times 2 \pi i / n}, \ldots, e^{n \times 2 \pi i / n}\right\}$, soit l'enveloppe convexe fermée des n^{e} racines de l'unité, qui est le n-gone régulier dans le disque ancré au point 1 . Nous avons le résultat suivant, dû à Perfect et Mirsky [2].

Théorème. $\Pi_{1} \cup \Pi_{2} \cup \cdots \cup \Pi_{n} \subseteq \omega_{n}$.
Avec des méthodes relativement simples, on peut montrer que

$$
\omega_{2}=\Pi_{1} \cup \Pi_{2}=[-1,1] \quad \text { et } \quad \omega_{3}=\Pi_{1} \cup \Pi_{2} \cup \Pi_{3} .
$$

Conjecture (Perfect-Mirsky). $\omega_{n}=\bigcup_{k=1}^{n} \Pi_{k}$.
En 2006, Mashreghi et Rivard [3] ont identifié la matrice bistochastique

$$
S_{t}:=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & t & 0 & 1-t \\
0 & t & 1-t & 0 & 0 \\
0 & 1-t & 0 & 0 & t \\
1 & 0 & 0 & 0 & 0
\end{array}\right], \quad(0 \leq t \leq 1)
$$

et ont observé que pour au moins $t \in[0.49,0.51], S_{t}$ admet une valeur propre en dehors de la région conjecturée $\bigcup_{k=1}^{5} \Pi_{k}$. Ainsi, en laissant varier t et en calculant la valeur propre exceptionnelle de S_{t}, on obtient une courbe qui se situe partiellement en dehors de la région de Perfect-Mirsky (en rouge dans Figures 3 and 4).

Figure 3: La région ω_{3}. Figure 4: La région ω_{4}.
Cependant, l'histoire ne s'arrête pas là puisqu'en 2015, Levick, Pereira et Kribs [4] ont montré que la conjecture est également vraie pour $n=4$.

Figure 5: La région de Figure 6: Gros plan sur la Perfect-Mirksy $\bigcup_{k=1}^{5} \Pi_{k}$ courbe exceptionnelle auet la courbe exceptionnelle tour de de Mashreghi-Rivard. $\quad[-0.35,-0.2] \times[0.7,0.85]$.

Ludovick Bouthat
If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.

John von Neumann

En ce qui concerne $n \geq 6$, le statut de la conjecture demeure en suspend. Cependant, Harlev, Johnson et Lim [5] ont récemment approché le problème numériquement. En se basant sur les travaux de Rivard et Mashreghi ainsi que sur leurs propres recherches, ils ont examiné les valeurs propres obtenues par des matrices bistochastiques qui peuvent être écrites comme une combinaison convexe d'au plus deux matrices de permutation pour $n \leq 11$ (comme c'est le cas pour S_{t}). Ils ont observés que pour chaque cas sauf $n=5$, toutes les valeurs propres se trouvent dans $\bigcup_{k=1}^{n} \Pi_{k}$. Cela les a motivés à proposer la conjecture suivante.

Références

[1] F. I. Karpelevič. "On the characteristic roots of matrices with nonnegative elements." Izvestiya Akad. Nauk SSSR. Ser. Mat., vol. 15, (pg. 361-383). 1951.
[2] L. Mirsky. "Results and problems in the theory of doubly-stochastic matrices." Z. Wahrscheinlichkeits theorie und Verw. Gebiete, vol. 1, (pg. 319-334). 1962/63.
[3] J. Mashreghi et R. Rivard. "On a conjecture about the eigenvalues of doubly stochastic

Conjecture (Harlev-Johnson-Lim). $\omega_{n}=\bigcup_{k=1}^{n} \Pi_{k}$ pour $n \geq 1$, sauf pour $\mathbf{n}=\mathbf{5}$.

Aussi troublante soit-elle, cette conjecture semble être la plus convaincante à ce jour, car elle est étayée par des calculs numériques et des propriétés algébriques de \mathcal{D}_{n}. Espérons qu'une nouvelle idée nous permettra de résoudre ce mystérieux problème. En attendant, nous concluons par la question ouverte suivante :

Question ouverte. Quelle est la région ω_{n} pour $n \geq 5$? En particulier, peut-on caractériser la région ω_{5} ?
matrices." Linear Multilinear Algebra, vol. 55, no. 5, (pg. 491-498). 2007.
[4] J. Levick et al. "The fourdimensional Perfect-Mirsky Conjecture." Proceedings of the American Mathematical Society, vol. 143, no. 5, (pg. 1951-1956). 2015.
[5] A. Harlev et al. "The Doubly Stochastic Single Eigenvalue Problem : A Computational Approach." Experimental Mathematics, vol. 31, no. 3, (pg. 936-945). 2022.

Ada Lovelace: The Woman Who Saw the Future

By: Courtney Allen (University of Guelph)

In 1843, an English translation of a French article was published in Taylor's Scientific Memoirs [1]. The article, originally written by Luigi Menabrea, outlined the workings of a hypothetical machine known as Babbage's Analytical Engine, an early programmable computer. It was wildly influential, not for the article itself, but for the notes made by the translator, a young woman by the name of Augusta Ada King, the Countess of Lovelace.

Ada Lovelace, as she is more commonly known, was the only legitimate child of Lord Byron, born in England on 10 December 1815. After her parents separation, her mother, Lady Byron, encouraged her to pursue the sciences. Since the sciences were then thought to be the province of men, Lovelace gained her education by reading textbooks and corresponding with some of the greatest mathematical minds of the time, one of whom was Charles Babbage [2].

Seeing her interest in his proposed Analytical Engine, Babbage encouraged Lovelace to read and translate the aforementioned paper by Luigi Menabrea [3]. But Lovelace did more than that, she saw the potential of the Engine in a way that no one had before. Her notes were longer than the article itself, and contain the first computer program, a table designed for the Engine that
would compute the Bernoulli numbers [2]. More importantly, she saw the true power of the Analytical Engine, theorizing that it could be used to perform complicated tasks such as composing music [2]. Almost 100 years after her death from uterine cancer at age 36, her work continued to influence the inventors of the first modern computers, such as Alan Turing [3].

At a time when women's mathematical aptitude was often dismissed, Ada Lovelace saw the possibilities of a machine that did not yet even exist

References

[1] A. Lovelace. "Sketch of the Analytical Engine invented by Charles Babbage Esq. By L.F.Menabrea, of Turin, officer of the Military Engineers, with notes upon the memoir by the translator." Taylor's Scientific Memoirs vol. 3, (pg. 666-731). 1843.
[2] C. Hollings et al. "The Lovelace-DeMorgan mathematical correspondence: A critical re-appraisal." Historia Mathematica vol. 44 (pg. 202-231). 2017.
[3] L. C. Aiello. "The multifaceted impact of Ada Lovelace in the digital age". Artificial Intelligence vol. 235 (pg. 58-62). 2016.

Student Poster Session Winners Summer 2022

Almost Periodic Equidistributed Functions
- Yihan Zhu (University of Windsor)

Analyzing Distance-Regular Graphs Arizing From Primitive Groups

- Alaina Pardy and Abigail Rowsell (Memorial University of Newfoundland Grenfell Campus)

Analyzing Distance-Regular Graphs Arising From Primitive Groups

Almost Periodic Equidistributed Functions

- Alex Kirillova (University of Waterloo)

Student Poster Session Winners Winter 2022

Positivity is undecidable in tensor product of free algebras
 - Yuming Zhao (University of Waterloo)

Liking this issue of Notes from the Margin?

Visit the StudC website at studc.math.ca to see back issues of The Margin, and to get up to date on activities brought to you by the StudC, like the AARMS-CMS Student Poster Session and the Canadian Undergraduate Mathematics Conference.

Series expansion via unwinding

- William Verreault (Université Laval)

Optimality and Sustainability of Delayed Impulsive Harvesting
Jenny Lawson (University of Calgary)

Activities funded by the CMS StudC in 2022

- Math to Power her Life
(May $21^{\text {st }}$ - University of Ottawa)
- Ontario Mathematics Conference (OMC) 2022
(May $25^{\text {th }}-29^{\text {th }}$ - University of Ottawa)
- Colloque Panquébécois de l'ISM (CPISM) 2022
(May $27^{\text {th }}-29^{\text {th }}-$ Université Laval)
- Truth Values \& UOttawa (Sept. $15^{\text {th }}-17^{\text {th }}-$ University of Ottawa)
- Séminaires Universitaires en Mathématiques à Montréal (SUMM) 2022
(Jan. $8^{\text {th }}-9^{\text {th }}-$ Université de Montréal)
- Alberta Graduate Mathematics and Statistics Conference (AGMSC) 2022
(July $4^{\text {th }}-8^{\text {th }} 2022$ - University of Calgary)
- Canadian Undergraduate Mathematics Conference (CUMC) 2022
(July $13^{\text {th }}-17^{\text {th }}$ - Université Laval)

CPISM 2022

SUMM 2022

CUMC 2022

AGMSC 2022

Want to receive StudC funding for a student event or activity? Visit the StudC website at studc.math.ca to find the application form.

Acknowledgements

This edition of Notes from the Margin wouldn't be possible without the help of the following people:

- Our contributors:

Ludovick Bouthat and Alexander Kroitor

- The CMS Student Committee (StudC): In particular our president, Alice Lacaze
- William Verreault:

For proofreading and providing content suggestions

- Kseniya Garaschuk:

For her guidance and advice

Thank you to everyone listed above for your help and support, along with the Canadian Mathematical Society for providing funding.

Submit your article to Notes from the Margin!

Do you want to share your writing with a group of likeminded mathematics students? Consider submitting your article to Notes from the Margin. We are a publication of the Canadian Mathematical Society Student committee, and we accept original research, opinion pieces, mathematical games and puzzles, and anything in-between. If you want to write about math, we want to read it!

To submit your article, email your .tex or . doc file to the editor at student-editor@cms.math.ca.

Submit your article by October 1st 2023 to be considered for publication in the Winter 2023 issue of the Margin.

Vous souhaitez partager vos écrits avec un groupe d'étudiants en mathématiques partageant les mêmes idées ? Pensez à soumettre votre article à Notes from the Margin. Nous sommes une publication du Comité étudiant de la Société mathématique du Canada et nous acceptons les recherches originales, les articles d'opinion, les jeux et les casse-têtes mathématiques, et tout ce qui se trouve entre les deux. Si vous voulez écrire sur les mathématiques, nous voulons le lire!

Pour soumettre votre article, envoyez votre fichier .tex ou .doc à la rédactrice en chef à l'adresse studenteditor@cms.math.ca.

Soumettez votre article avant le 1er octobre 2023 pour être pris en compte pour publication dans le numéro d'hiver 2023 de la <Margin».

